Matrix Micellar Casein Protein

Matrix Micellar Casein Protein is a product from UK based company Matrix Nutrition. This product states that it can prevent muscle breakdown as well as supports muscle mass development. This review will aim to examine the ingredients in this product to see if it can support the claims made.

Ingredients

Micellar Casein

Micellar Casein is similar to Calcium Caseinate but does not go through processing with chemicals. It has a thicker taste and is slow to digest meaning a slower release of amino acids. Calcium is a vital part of dietary consumption in order to aid growth and maintenance of bones (1). Other important benefits of calcium include helping blood clotting (2), heart contractions (3), lungs (4) and muscles to function properly (5), this is due to calcium binding with phosphate to create calcium phosphate (6).

Milk Protein Isolate

milk protein helps aid muscle protein synthesis when combined with resistance training (7, 8). Other key features include increasing muscle mass (9), an increase in lean body mass (10) and greater recovery from exercise (11). Longer periods of supplementation have shown greater gains in fat free mass (12).

Muscle protein synthesis is increased due to high concentration of Leucine (BCAA) which is a signalling molecule needed to increase muscle protein synthesis (13). Consumption of whey protein helps increase muscle mass due to a greater amount of peripheral nitrogen retention whereas soy protein has been found to have a greater effect on splanchnic protein synthesis (14).

The reason for greater recovery of exercise can be due to a post exercise insulin response (15, 16) which means glycogen resynthesis occurs rapidly so exercise can be prolonged, with greater training volume increased hypertrophy and decreased muscle damage.

ZMA Formula

ZMA is a formula that includes zinc, magnesium and vitamin B6. Zinc has been identified as a factor for many enzymes responsible for the synthesis, storage and release of insulin (17), with increases in lean body mass while fat mass either remains stable or decreases, depending on the degree of baseline zinc deficiency (18).  Magnesium has been found to be used for 300 biochemical reactions in the body (19). It has been found to maintain muscle function (20), support a healthy immune system (21), keep the heart beat steady (22), and help strengthen bones (23). It has also been found to maintain blood glucose levels (24) and aid in the production of energy and protein. The active form of vitamin B6 is known as P-L-P (25), which is stimulated by exercise (26). During exercise the body relies on the liver to produce glucose via glycogenolysis, for which vitamin b6 is essential for, and is an integral part of the glycogen phosphorylase enzyme and thus will provide energy to the bodies’ muscles (27).

Peptide Bonded Glutamine

Glutamine is a naturally non-essential neutral amino acid that helps with the transport of nitrogen between tissues. Heavy exercise has shown a reduction of glutamine in the blood (28). The amount of glutamine in the muscle is known to be related to the rate of protein synthesis (29) and glycogen synthesis (30) in the first few hours of recovery period of exercise.

Whey Peptides

Whey peptides are a broken down version of whey protein which enables the body to digest protein quicker. Whey protein helps aid muscle protein synthesis when combined with resistance training (31, 32). Other key features include increasing muscle mass (33), an increase in lean body mass (34) and greater recovery from exercise (35). Longer periods of supplementation have shown greater gains in fat free mass (36).

Xanthan Gum

Xanthan Gum is a water soluble dietary fibre, which has been reported to reduce total cholesterol; however there seems to be insufficient evidence to confirm this theory. (37)

Summary

This product contains ingredients that can support the development of muscle mass whilst also preventing muscle breakdown. This product should be consumed post workout. This product has no banned substances when referring to the WADA prohibited list when observing the label / ingredients posted on the website.

*NOTE – This product has not been tested in a laboratory and may contain other substances that may not appear on the label

References

1 – Harada, S. I., & Rodan, G. A. (2003). Control of osteoblast function and regulation of bone mass. Nature, 423(6937), 349-355.

2 – Bogdanova, A., Makhro, A., Wang, J., Lipp, P., & Kaestner, L. (2013). Calcium in Red Blood Cells—A Perilous Balance. International journal of molecular sciences, 14(5), 9848-9872.

3 – Dhalla, N. S., Pierce, G. N., Panagia, V., Singal, P. K., & Beamish, R. E. (1982). Calcium movements in relation to heart function. Basic research in cardiology, 77(2), 117-139.

4 – Hawgood, S., Benson, B. J., & Hamilton Jr, R. L. (1985). Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry, 24(1), 184-190.

5 – Berchtold, M. W., Brinkmeier, H., & Müntener, M. (2000). Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease.Physiological reviews, 80(3), 1215-1265.

6 – Shanahan, C. M., Crouthamel, M. H., Kapustin, A., & Giachelli, C. M. (2011). Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circulation research, 109(6), 697-711.

7 – Coker, R. H., Miller, S., Schutzler, S., Deutz, N., & Wolfe, R. R. (2012). Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr J, 11(1), 105.

8 – Hulmi, J. J., Lockwood, C. M., & Stout, J. R. (2010). Review Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein.

9 – Pasiakos, S. M., McLellan, T. M., & Lieberman, H. R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Medicine, 45(1), 111-131.

10 – Volek, J. S., Volk, B. M., Gómez, A. L., Kunces, L. J., Kupchak, B. R., Freidenreich, D. J., … & Kraemer, W. J. (2013). Whey protein supplementation during resistance training augments lean body mass. Journal of the American College of Nutrition, 32(2), 122-135.

11 – Hansen, M., Bangsbo, J., Jensen, J., Bibby, B. M., & Madsen, K. (2014). Effect of Whey Protein Hydrolysate on Performance and Recovery of Top-Class Orienteering Runners. International journal of sport nutrition and exercise metabolism.

12 – Hartman, J. W., Tang, J. E., Wilkinson, S. B., Tarnopolsky, M. A., Lawrence, R. L., Fullerton, A. V., & Phillips, S. M. (2007). Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. The American journal of clinical nutrition, 86(2), 373-381.

13 – Atherton, P. J., Smith, K., Etheridge, T., Rankin, D., & Rennie, M. J. (2010). Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino acids, 38(5), 1533-1539.

14 – Fouillet, H., Mariotti, F., Gaudichon, C., Bos, C., & Tomé, D. (2002). Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. The Journal of nutrition, 132(1), 125-133.

15 – Hulmi, J. J., Volek, J. S., Selänne, H. A. R. R. I., & Mero, A. A. (2005). Protein ingestion prior to strength exercise affects blood hormones and metabolism. Medicine and science in sports and exercise, 37(11), 1990-1997.

16 – Power, O., Hallihan, A., & Jakeman, P. (2009). Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino acids, 37(2), 333-339.

17 – Hashemipour, M., Kelishadi, R., Shapouri, J., Sarrafzadegan, N., Amini, M., Tavakoli, N., … & Poursafa, P. (2009). Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens), 8(4), 279-285.

18 – Prasad, A. S. (1991). Discovery of human zinc deficiency and studies in an experimental human model. The American journal of clinical nutrition, 53(2), 403-412.

19 – Ryan, M. F. (1991). The role of magnesium in clinical biochemistry: an overview.Annals of Clinical Biochemistry: An international journal of biochemistry in medicine, 28(1), 19-26.

20 – Dørup, I., Skajaa, K., Clausen, T., & Kjeldsen, K. (1988). Reduced concentrations of potassium, magnesium, and sodium-potassium pumps in human skeletal muscle during treatment with diuretics. British medical journal (Clinical research ed.), 296(6620), 455.

21 – Tam, M., Gomez, S., Gonzalez-Gross, M., & Marcos, A. (2003). Possible roles of magnesium on the immune system. European journal of clinical nutrition,57(10), 1193-1197.

22 – White, R. E., & Hartzell, H. C. (1989). Magnesium ions in cardiac function: regulator of ion channels and second messengers. Biochemical pharmacology,38(6), 859-867.

23 – Okuma, T. (2001). Magnesium and bone strength. Nutrition, 17(7), 679-680.

24 – Paolisso, G., Scheen, A., d’Onofrio, F., & Lefèbvre, P. (1990). Magnesium and glucose homeostasis. Diabetologia, 33(9), 511-514.

25 – Ubbink, J. B., Vermaak, W. J., van der Merwe, A., & Becker, P. J. (1993). Vitamin B-12, vitamin B-6, and folate nutritional status in men with hyperhomocysteinemia. The American journal of clinical nutrition, 57(1), 47-53.

26 – Manore, M. M. (2000). Effect of physical activity on thiamine, riboflavin, and vitamin B-6 requirements. The American journal of clinical nutrition, 72(2), 598s-606s.

27 – Manore, M. N., Leklem, J. E., & Walter, M. C. (1987). Vitamin B-6 metabolism as affected by exercise in trained and untrained women fed diets differing in carbohydrate and vitamin B-6 content. The American journal of clinical nutrition,46(6), 995-1004.

28 – Parry-Billings, M., Budgett, R., Koutedakis, Y., Blomstrand, E., Brooks, S.., Williams, C.,  & Newsholme, E. A. (1992). Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Medicine and science in sports and exercise, 24(12), 1353-1358.

29 – Rennie, M. J., Edwards, R. H. T., Krywawych, S., Davies, C. T., Halliday, D., Waterlow, J. C., & Millward, D. J. (1981). Effect of exercise on protein turnover in man. Clin Sci, 61(5), 627-639.

30 – Bowtell, J. L., Gelly, K., Jackman, M. L., Patel, A., Simeoni, M., & Rennie, M. J. (1999). Effect of oral glutamine on whole body carbohydrate storage during recovery from exhaustive exercise. Journal of Applied Physiology, 86(6), 1770-1777.

31 – Coker, R. H., Miller, S., Schutzler, S., Deutz, N., & Wolfe, R. R. (2012). Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr J, 11(1), 105.

32 – Hulmi, J. J., Lockwood, C. M., & Stout, J. R. (2010). Review Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein.

33 – Pasiakos, S. M., McLellan, T. M., & Lieberman, H. R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Medicine, 45(1), 111-131.

34 – Volek, J. S., Volk, B. M., Gómez, A. L., Kunces, L. J., Kupchak, B. R., Freidenreich, D. J., … & Kraemer, W. J. (2013). Whey protein supplementation during resistance training augments lean body mass. Journal of the American College of Nutrition, 32(2), 122-135.

35 – Hansen, M., Bangsbo, J., Jensen, J., Bibby, B. M., & Madsen, K. (2014). Effect of Whey Protein Hydrolysate on Performance and Recovery of Top-Class Orienteering Runners. International journal of sport nutrition and exercise metabolism.

36 – Hartman, J. W., Tang, J. E., Wilkinson, S. B., Tarnopolsky, M. A., Lawrence, R. L., Fullerton, A. V., & Phillips, S. M. (2007). Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. The American journal of clinical nutrition, 86(2), 373-381.

37 – Jensen, C. D., Spiller, G. A., Gates, J. E., Miller, A. F., & Whittam, J. H. (1993). The effect of acacia gum and a water-soluble dietary fiber mixture on blood lipids in humans. Journal of the American College of Nutrition, 12(2), 147-154.

Use for  Muscle Gain
Website matrix-nutrition.co.uk
Price    £16.49 – 39.99